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Abstract
We investigate theoretically linear and nonlinear quantum transport through a smaller quantum
dot in a Kondo regime connected to two leads in the presence of a larger side-coupled
noninteracting quantum dot, without tunneling coupling to the leads. To do this we employ the
slave boson mean field theory with the help of the Keldysh Green’s function at zero
temperature. The numerical results show that the Kondo conductance peak may develop
multiple resonance peaks and multiple zero points in the conductance spectrum owing to
constructive and destructive quantum interference effects when the energy levels of the large
side-coupled noninteracting dot are located in the vicinity of the Fermi level in the leads. As the
coupling strength between two quantum dots increases, the tunneling current through the
quantum device as a function of gate voltage applied across the two leads is suppressed. The
spin-dependent transport properties of two parallel coupled quantum dots connected to two
ferromagnetic leads are also investigated. The numerical results show that, for the parallel
configuration, the spin current or linear spin differential conductance are enhanced when the
polarization strength in the two leads is increased.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years, electronic transport through a quantum
dot or molecular system has been an interesting area of
research owing to advances in the nanofabrication of quantum
devices [1–4]. Since the Kondo effect was first discovered
in a semiconductor quantum dot experimentally [5, 6], many-
body effects in nanoscale systems have been investigated
theoretically and experimentally [7–11]. It is well known that
the Kondo effect is a many-body singlet state arising from the
creation of a spin-entangled state consisting of the localized
spin state in the quantum dot and the inverse spin state in the
leads. The Kondo resonance peak with the unitary limit of the
conductance G = 2e2/h at the Fermi level EF is developed at
lower temperatures. The electronic tunneling becomes possible

3 Author to whom any correspondence should be addressed.

even if the quantum dot lies in the Coulomb blockage regime.
The width of the Kondo conductance peak is the order of the
Kondo temperature.

Fano resonance is another important interference effect in
nanoscale systems, which stems from quantum interference
between resonant and non-resonant processes. It was
first found in atomic physics [12] and now it is studied
extensively in quantum dot systems as a good probe for phase
coherence [13]. An artificial molecule can be formed by
coupling two (or more) quantum dots, and Kondo effects in
such multiple quantum dots are studied but they are limited
to single or two coupled dots. Jiang et al [14] studied the
equilibrium and non-equilibrium Kondo transport properties
of serially coupled triple quantum dots, but Fano effects
cannot be observed due to the serially coupled configuration.
More recently, Wu et al [15] studied the transport properties
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Figure 1. Schematic plot of the Kondo dot connected with the leads
and a larger quantum dot without the electron–electron interactions.

of a strongly correlated quantum dot with a side-coupled
noninteracting quantum dot. Two interesting problems are
presented in the present work. First we look at what happens
to Kondo effects when more energy levels in the side-coupled
quantum dot are considered. The other problem is the
spin-dependent transport through the Kondo dot when two
ferromagnetic leads replace two normal metal leads. To our
knowledge, less attention has been paid to Fano effects in the
spin-dependent case.

In this paper, we studied electronic transport through a
strongly correlated quantum dot connected to two leads in
the presence of a larger side-coupled noninteracting dot by
using the slave boson mean field theory (SBMFT). For low
voltage and low temperature, the SBMFT has been proved to
be a good method to probe the transport properties of strongly
correlated systems. Spin fluctuations are only taken into
account, while charge fluctuations are neglected entirely. The
numerical results show that the original Kondo conductance
peak may develop into a linear conductance band consisting of
multiple resonances and anti-resonances due to Fano–Kondo
effects when more energy levels of the large side-coupled dot
are pinned around the Fermi level in the leads. The spin-
dependent electric transport properties of the quantum system
are also studied in the present work when a strongly correlated
quantum dot is coupled to two ferromagnetic leads.

2. Model and method

The quantum device including a small quantum dot and a large
quantum dot is shown schematically in figure 1, in which only
the small quantum dot is coupled to the leads and the large
quantum dot is coupled to the small quantum dot. Only a spin
degenerate energy level in the small quantum dot is considered
by tuning the shape of the small quantum dot. The electron–
electron interactions in the small quantum dot become obvious,
therefore the quantum dot can act as a Kondo impurity when
the system temperature is low enough. The side-coupled
quantum dot is assumed to be large, so the charging energy
in the large quantum dot can be neglected. Multiple side-
coupled transmission paths in the device are presented by
using the large quantum dot. Using suitable voltages and
confining the quantum dot potential [16], the energy level
in the small quantum dot εd is much lower than the energy
levels in the large quantum dot ε j ( j = 1, . . .). When an

infinite on-site Coulomb interaction in the small quantum dot
is considered, the capacitive (interdot Coulomb interaction)
coupling between the two dots may be neglected [17]. Oreg
et al [18] suggested an experimental device consisting of a
small quantum dot with a single energy level and a large
quantum dot with a finite Coulomb energy. Anders et al
[19] explored a double quantum dot system composed of a
small quantum dot coupled to a quantum box (a large quantum
dot) and a lead by using the numerical renormalization group
method. The Kondo dot is coupled via Vkασ to two Fermi-
liquid reservoirs denoted by α = {L, R}. The large quantum
dot is coupled to the Kondo dot by the hopping amplitude t ,
and is not coupled to two reservoirs. The total Hamiltonian is
given by

Htotal =
∑

kασ

εkασ a†
kασ akασ +

∑

σ

εd d†
σ dσ + Ud†

↑d↑d†
↓d↓

+
∑

jσ

ε j c
†
jσ c jσ +

∑

jσ

t (c†
jσ dσ + H.c.)

+
∑

kασ

(Vkασ a†
kασ dσ + H.c.), (1)

where a†
kασ (akασ ) is the creation (annihilation) operator for an

electron with energy εkασ and spin index σ in lead α; d†
σ (dσ )

creates (destroys) an electron with spin index σ in the Kondo
dot; c†

jσ (c jσ ) represents the creation (annihilation) operator for
an electron with spin index σ in the j th energy level inside
the larger quantum dot. U is the on-site energy scale in the
Kondo impurity. The energy levels of the larger quantum dot
are chosen as

ε j = ε1 − ( j − 1)� ( j = 2, 3, . . .), (2)

where ε1 is the first energy level inside the larger quantum
dot, and � denotes the difference between two nearest
energy levels. When the intradot Coulomb interaction is
sufficiently large, the double occupied state inside the Kondo
dot is forbidden. Using the slave-boson representation, the
annihilation (creation) operator dσ (d†

σ ) in the Kondo dot is
represented by dσ = b† fσ (d†

σ = f †
σ b) with boson field

b and pseudofermion field fσ , which implies that destroying
an electron in the Kondo dot is equivalent to destroying a
pseudoelectron with spin σ and creating a boson at the same
time. The two-fold degenerate Anderson Hamiltonian with the
Lagrange multiplier λ is rewritten as

H̃total =
∑

kασ

εkασ a†
kασ akασ +

∑

σ

εd f †
σ fσ +

∑

jσ

ε j c
†
jσ c jσ

+ 1√
N

∑

jσ

t (c†
jσ b† fσ + H.c.)

+ 1√
N

∑

kασ

(Vkασ a†
kασ b† fσ + H.c.)

+ λ

(
∑

σ

f †
σ fσ + b†b − 1

)
. (3)

In the lowest order, we assume that the slave-boson (SB)
operator is a constant real number b(t)/

√
N = b̃ and

neglect the fluctuations around the average 〈b(t)〉. At
zero temperature, this SBMFT is reasonable for describing
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spin fluctuations (Kondo regime), which restricts our non-
equilibrium calculation to low voltages V � εd . Equation (3)
is rewritten as

H̃total =
∑

kασ

εkασ a†
kασ akασ +

∑

σ

ε̃d f †
σ fσ +

∑

jσ

ε j c
†
jσ c jσ

+ t̃
∑

jσ

(c†
jσ fσ + H.c.) +

∑

kασ

(Ṽkασ a†
kασ fσ + H.c.)

+ λ
(

Nb̃ − 1
)

, (4)

where ε̃d = εd + λ. Using the constraints and the equation of
motion of the SB operator d

dt 〈b̃〉 = 0, the two self-consistent

equations with two unknowns (b̃, λ) can be written as

2b̃2 +
∑

σ

n f σ = 1 (5)

and

λb̃2 − i
∑

σ

∫
dε

4π
(ε − ε̃d)G<

f σ (ε) = 0, (6)

where G<
f σ (ε) denotes the lesser Green’s function of the

Kondo dot and n f σ is the electron occupation number at the
quantum state ε̃d in the presence of the Kondo correlations.
Once the retarded Green’s function of the Kondo dot is
achieved, the lesser Green’s function can be obtained by the
Keldysh equation

G<
fσ (ε) = Gr

f σ (ε)�̃<
σ (ε)Ga

f σ (ε), (7)

where �̃<
σ = 2i[	̃L

σ fL(ε) + 	̃R
σ fR(ε)], and the Fermi–Dirac

distribution function for the αth electrode is fα(ε) = 1/{1 +
exp[(ε − μα)/kBT ]} with the electrochemical potential μL =
eV/2 and μR = −eV/2, where the bias V is applied
across two leads. 	̃α

σ = b̃2	α
σ describes the renormalized

linewidth function to the lead α. In the wide band limit,
the noninteracting line with 	α

σ = ∑
k π |Vkασ |2δ(ε − εkασ )

is regarded as the energy-independent constant. Using the
equation-of-motion for the operator fσ , we obtain the retarded
Green’s function

Gr
fσ (ε) =

∏
j(ε−ε j )

(ε − ε̃d + i	̃σ )
∏

j (ε−ε j) − ∑
j t̃2

∏
j ′(ε−ε j ′)/(ε−ε j )

,

(8)

where 	̃σ = 	̃L
σ + 	̃R

σ , and Gr
f σ (ε) is the Fourier transform

of the retarded Green’s function Gr
f σ (t, t ′) = −iθ(t −

t ′)〈{ fσ (t), f †
σ (t ′)}+〉r.

By using the renormalized parameters determined self-
consistently, the tunneling current through the system is given
by the Landauer–Büttiker form [20–22]

I = e

h

∑

σ

∫
dε[ fL(ε) − fR(ε)]T̃σ (ε), (9)

with the left/right Fermi–Dirac distribution function fL/R(ε).
The transmission probability T̃σ (ε) for spin index σ with
energy ε is

T̃σ (ε) = 2	̃L
σ 	̃R

σ

	̃L
σ + 	̃R

σ

Aσ (ε). (10)

Aσ (ε) is the spectral function with spin σ , which is defined as

Aσ (ε) = i[Gr
f σ (ε) − Ga

f σ (ε)]. (11)

The differential conductance G = dI/dV is calculated from
equation (9). From the above results, we note that the transport
properties depend implicitly on b̃ and λ, which must be
calculated self-consistently when system parameters are given.
Such a feature results in some interesting effects, which are not
observed in the noninteracting Anderson model [23–25].

3. Results and discussion

In this section, we will present the numerical results using
Lorentzian bands with D = 60	. The bare level for the Kondo
impurity is fixed at εd = −3.5	 with 	 = 	α

↑+	α
↓ (α = L, R),

and 	 is taken as the energy unit. In the following calculation
we consider the case when the Fermi level is pinned at zero
energy (EF = 0).

3.1. Non-polarized leads

We first study the transport properties of the double-dot
system for the equilibrium case when the bias voltage V is
infinitesimally small. The linear differential conductance G
can be calculated readily by using equation (9) once b̃ and
λ are obtained self-consistently. In figure 2(a), we plot the
differential conductance G as a function of the gate voltage Vg

applied to the larger quantum dot including three energy levels
at zero temperature. Due to the Fermi energy level fixed at zero
energy (EF = 0), the transmission coefficient for spin index σ

can be approximated by

T̃σ (ε1) ≈ 4	̃L
σ 	̃R

σ

(
∏

j ε j )
2

(
∑

j t̃2
∏

j ′ ε j ′/ε j )2 + 	̃2
σ (

∏
j ε j)2

. (12)

In the following, we study the linear transport properties of
a quantum system, in which the larger quantum dot includes
three energy levels. A gate voltage Vg is applied to the
larger quantum dot, which induces the energy levels inside
the larger quantum dot to shift together. The level spacing in
the larger quantum dot � is fixed at 0.5TK, in which TK =
De−π |εd −EF|/	 denotes the Kondo temperature at equilibrium
when the coupling between the Kondo dot and the large
quantum dot is absent. In experiments, we can control the
number and the level spacing of the energy levels in the larger
quantum dot by tuning the shapes of the larger quantum dot.
For simplicity, the levels can be considered as equidistant in
our model. For |Vg| 
 EF, the quantum transport through
the Kondo dot is not affected by the larger side-coupled
noninteracting quantum dot, therefore the maximal differential
conductance G = 2e2/h is obtained due to the Kondo effect.
Three anti-resonant dips appear at 0, �, and 2� due to
the destructive quantum interference, and two resonant peaks
appear around (1 ±

√
3

3 )� due to the constructive quantum
interference effect. As the tunneling rate between two dots
becomes small, the transport properties of two dots are mainly
dependent on the Kondo effect, and the Fano effect becomes
inconspicuous. The two conductance peaks become wider,

3
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Figure 2. Differential conductance G of the quantum dot molecule
as a function of gate voltage Vg applied to the larger quantum dot.
(a) The coupling strength between the Kondo dot and the
side-coupled dots t is chosen as 0.001	 (solid line), 0.005	 (dotted
line), and 0.01	 (dashed line), respectively. (b) The level spacing in
the large quantum dot � is chosen as 0.4TK (solid line), 0.6TK

(dotted line), and 0.8TK (dashed line), respectively.

while the anti-resonance points stay at the original positions.
In figure 2(b), the differential conductance G as a function of
the gate voltage Vg under several different level spacings at
zero temperature is plotted. The interdot tunneling coupling is
taken as t = 0.01	. The results show that the anti-resonant
dips (G = 0) are dependent on the level spacings. When more
energy levels inside the larger quantum dot are considered,
there are more anti-resonances and resonances emerge in the
differential conductance curve. Figure 3 shows the behavior of
the linear conductance as a function of Vg when ten energy
levels inside the larger quantum dot are considered. Due
to multiple Fano–Kondo interactions, we find that ten anti-
resonant dips and nine resonant peaks appear in the linear
conductance spectrum.

Now let us pay some attention to the transport behavior of
the quantum dot molecule in the non-equilibrium case by using
equation (9). In figure 4, we plot the tunneling current through
the quantum dot molecule and the corresponding nonlinear
differential conductance as functions of the lower applied bias
V with parameters ε1 = 0.5TK and � = 0.5TK on the
top and low plane under different coupling strengths between
the Kondo impurity and the larger side-coupled noninteracting
quantum dot including three energy levels. In the absence of
the larger quantum dot t = 0, only the Kondo dot takes part
in transporting through the quantum device. The maximal

Figure 3. Differential conductance G as a function of the gate
voltage Vg applied to the larger quantum dot with ten quantum dot
energy levels.

Figure 4. Differential conductance G and tunneling current I as
functions of bias V with different tunneling couplings. The solid line
corresponds to the case with t = 0.005	 and the dotted line
corresponds to the case with t = 0.01	.

differential conductance 2e2

h at zero bias is always observed
due to Kondo effects, which are studied widely using various
approaches. In this work, we pay attention to the case when
a larger quantum dot, including multiple energy levels, is
attached to the Kondo dot. The results show that the zero
bias anomaly may be entirely suppressed when one of the
multiple energy levels is aligned with Fermi energy EF = 0.
Due to constructive quantum interference we observed several
differential conductance peaks related to the smooth increasing
of tunneling current through the quantum system, and due

4
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Figure 5. The charge differential conductance G and spin
differential conductance GS as functions of the gate voltage Vg

applied to the larger quantum dot. (a) The charge conductance for the
parallel configuration. (b) The spin conductance for the parallel
configuration. The coupling strength between the two quantum dots
is chosen as t = 0.01	.

to destructive quantum interference we observed several zero
conductance points around V = ±2ε j . As t increases, the
tunneling current through the system decreases.

3.2. Polarized leads

In this section, we will consider two kinds of magnetic
configurations: (i) the parallel (P), where the majority of
electrons at the left electrode and the right electrode are in
the same directions; and (ii) the antiparallel (AP), where the
magnetization of the right electrode is reversed. It is well
known that the coherent spin transport parameters can be
conveniently expressed by introducing magnetic polarization
factors p for the polarized leads. For P configuration, 	L

↑ =
	R

↑ = (1 + p)	/2 and 	L
↓ = 	R

↓ = (1 − p)	/2. For AP
configuration 	L

↑ = 	R
↓ = (1 + p)	/2 and 	L

↓ = 	R
↑ =

(1 − p)	/2, where p denotes the polarization strength of the
two leads.

Let us first analyze the electronic transport through
the Kondo dot attached to the parallel configuration of the
polarized leads under several different values of p at zero
temperature. The system parameter � is chosen to be 0.5TK. In
figure 5, we plot the charge differential conductance G and spin
differential conductance Gs as functions of the gate voltage Vg

applied to the larger noninteracting quantum dot including five
energy levels under infinitesimally small bias. G is calculated
by equation (9), and Gs can be obtained by the following

Figure 6. Charge differential conductance as a function of the gate
volatage Vg for the antiparallel case for several different values of p.
Other parameters are chosen as in figure 5.

equation Gs = dIS/dV , where the spin current is given by
using the relation IS = h̄

2e (I↑ − I↓). This definition of the spin
current has been adopted in some works [26, 27]. As a result of
the destructive quantum interference effects, five anti-resonant
points appear around 0, �, 2�, 3� and 4�, respectively. Four
resonant peaks emerge in the middle regions of every two
anti-resonant dips due to the constructive quantum interference
effects. The charge differential conductance curve becomes
narrower with the increase of p, however the heights of these
conductance peaks are always at the unitary limit 2e2/h. The
reason for this is that the same tunneling couplings for the
up-spin and down-spin electrons 	L

↑ = 	R
↑ and 	L

↓ = 	R
↓

exist when the parallel configuration is presented, which results
in the heights of the main conductance peaks being almost
independent of p. In the spin differential conductance Gs

curves, we find that some new zero spin conductance points
appear at the positions of the charge conductance peaks due
to I↑ = I↓. So nine zero spin conductance dips appear in
the double quantum dot system. As p increases, the spin
conductance peaks become higher and broader due to 	L

↑ +
	R

↑ > 	L
↓ + 	R

↓ . For the antiparallel configuration, up-spin and
up–down electrons have asymmetry tunneling couplings for
the left and right electrode 	L

↑ > 	R
↑ and 	L

↓ < 	R
↓ . So we see

that the linear charge differential conductance as a function of
the applied gate voltage Vg in figure 6 decreases as p increases.
Due to I↑ = I↓ for the antiparallel case, the spin differential
conductance of the quantum dot molecule disappears in the
quantum system.

Finally, we consider the non-equilibrium transport
properties of the quantum system in figure 7. We plot the
charge current and spin current as functions of the applied
voltage V across the leads under several different values of p
for the parallel configuration, in which the larger quantum dot
includes three quantum energy levels. The system parameters
are chosen to be ε1 = 0.5TK and � = 0.5TK, respectively. In
the high voltage region, the dependence of the charge current
on p becomes obvious, and it decreases monotonically with the
increase of p. The spin current exhibits the inverse behavior
as p increases. Due to the Fano–Kondo interaction, we find
that several steps appear in the charge curve, while more

5
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Figure 7. The charge current I and spin current IS through the
quantum system as functions of the applied volatage V for the
parallel case. The coupling strength between two quantum dots is
chosen as t = 0.01	. Other system parameters are chosen as in
figure 4.

steps emerge in the spin current curve. Figure 8 shows the
dependence of the charge current on the applied voltage under
several different values of p for the antiparallel configuration.
The results shows that the charge current decreases with
the increase of p for the antiparallel configuration when the
applied voltage is fixed.

4. Summary

In summary, we have studied theoretically the transport
properties of a Kondo quantum dot coupled to two leads and
to a side-coupled larger noninteracting quantum dot without
tunneling coupling to the leads. To do this we have used the
slave boson mean field theory with the help of the Keldysh
Green’s function at zero temperature. As a consequence of the
Fano–Kondo interactions, the linear and nonlinear conductance
spectra exhibit an oscillating band with the resonances and
anti-resonances when the energy levels of the side-coupled
large quantum dot are located around the Fermi level in the
leads. As the coupling strength between two quantum dots
increases, the tunneling charge current through the quantum
dots system is suppressed. Spin-dependent transport properties
of a Kondo dot connected with two ferromagnetic leads are
also studied in this paper. Spin current through two quantum
dots is calculated numerically for the parallel configuration.
The results show that spin current or linear spin differential
conductance are enhanced with increase of p. We also studied

Figure 8. The charge current I through the quantum system as a
function of the applied volatage V for the antiparallel case under
several different values of p. Other parameters are chosen as in
figure 7.

the charge current and differential conductance for parallel and
antiparallel configurations.
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68 195318
[12] Fano U 1961 Phys. Rev. 124 1866
[13] Clerk A A, Waintal X and Brouwer P W 2001 Phys. Rev. Lett.

86 4636
[14] Jiang Z T, Sun Q F and Wang Y P 2005 Phys. Rev. B

72 045332
[15] Wu B H, Cao J C and Ahn K H 2005 Phys. Rev. B 72 165313
[16] Huttel A K, Ludwig S, Lorenz H, Eberl K and Kotthaus J P

2005 Phys. Rev. B 72 081310

6

http://dx.doi.org/10.1103/PhysRevLett.88.126801
http://dx.doi.org/10.1103/RevModPhys.75.1
http://dx.doi.org/10.1103/PhysRevB.73.115310
http://dx.doi.org/10.1088/0953-8984/19/24/246201
http://dx.doi.org/10.1038/34373
http://dx.doi.org/10.1103/PhysRevLett.81.5225
http://dx.doi.org/10.1038/35015509
http://dx.doi.org/10.1103/PhysRevLett.88.076601
http://dx.doi.org/10.1103/PhysRevB.66.165408
http://dx.doi.org/10.1103/PhysRevB.68.195318
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRevLett.86.4636
http://dx.doi.org/10.1103/PhysRevB.72.045332
http://dx.doi.org/10.1103/PhysRevB.72.165313
http://dx.doi.org/10.1103/PhysRevB.72.081310


J. Phys.: Condens. Matter 20 (2008) 135226 Y S Liu et al

[17] Güçlü A D, Sun Q F and Guo H 2003 Phys. Rev. B 68 245323
[18] Oreg Y and Goldhaber-Gordon D 2003 Phys. Rev. Lett.

90 136602
[19] Anders F B, Lebanon E and Schiller A S 2005 Physica B

359 1381
[20] Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
[21] Meir Y, Wingreen N S and Lee P A 1991 Phys. Rev. Lett.

66 3048

[22] Meir Y, Wingreen N S and Lee P A 1993 Phys. Rev. Lett.
70 2601

[23] Aguado R and Langreth D C 2000 Phys. Rev. Lett. 85 1946
[24] López R, Aguado R and Platro G 2004 Phys. Rev. B 69 235305
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